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We present a global optimization method, called the genetic algorithms (GAs), for digital image/speckle
correlation (DISC). The new algorithms do not involve reasonable initial guess of displacement and de-
formation gradient and the calculation of second-order spatial derivatives of the digital images, which are
important challenges in practical implementation of DISC. The performance of a GA depends largely on

the selection of the genetic operators.

‘We test various operators and propose optimal operators. The

algorithms are then verified using simulated images and experimental speckle images.

OCIS codes: 110.6150, 030.6140.

Digital image/speckle correlation (DISC) has become a
popular tool for displacement and strain measurements
in recent years due to the advantages of automatic, non-
contact, full field, and real time. The method has found
valuable and widespread use in many research and en-
gineering applications(’:?]. In the last decade, a lot of
research has been performed in the area of the algo-
rithms for digital image correlation. Various algorlthms
have been proposed such as differential iteration!®!, dou-
ble Fourier transform(¥, and gradient-based methods!>-6].

However, these algorlthms often require reasonable initial
guess of displacement and deformation gradient. Iter-
ative algorithms also require the calculation of second-
order spatial derivatives of the digital images, which in-
creases computation complexity. In addition, the usual
gradient-based algorithm can easily be stuck at local min-
ima. In this study, we apply a global optimal algorithm to
DISC. When considering global optimization methods for
DISC, genetic algorithms (GAs) seem to have attracted
considerable attention. The efficiency and the simplic-
ity of the operation are two main attractions of the GAs
approach. The new algorithms based on GAs are pro-
posed for DISC i 1n this paper. Although GAs have been
applied to DISC!?), the performance of a GA depends
largely on the selectlon of the genetic operators. We test
various operators and propose optimal operators. To de-
velop DISC further, we derive more accurate algorithms
based on GAs. The algorithms are then verified using
simulated and experimental speckle images.

GAs are stochastic optimization algorithms that were
originally motivated by the natural selection mecha-
nism and evolutionary genetics. Unlike the conventional
gradient-based searching algorithms, GAs are inherently
parallel, and have a reduced chance of converging to the
local optimum and would be more likely to converge to
the global optimum. A GA starts off with a population of
randomly generated chromosomes and advances toward
better chromosomes by applying genetic operators, mod-
eled on the genetic processes occurring in nature. Dur-
ing successive iterations, called generations, the chromo-
somes are evaluated as possible solutions. Based on these
evaluations, a new population is formed using a mech-
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anism of selection and applying genetic operators such
as crossover and mutation. This type of algorithm uses
three basic operators: the selection, the crossover, and
the mutation. The selection operator works out a new
population starting from the current one by encouraging
the chromosomes having the strongest fitness (degree of
adaptation). The crossover operator uses the information
contained in two chromosomes to build two others. The
mutation performs a random transformation of a chro-
mosome to bring diversity.

The first problem during the utilization of GAs is the
representation of the chromosomes (individuals). There
are two kinds of representation in GAs, which are bi-
nary coding and real-valued codingl®. For real-valued
optimization problems, real-valued coding is simply much
easier and more efficient to implement, since it is con-
ceptually closer to the problem space. A real-code ge-
netic algorithm (RGA) works without the need of coding
and encoding procedures and hence reduces the compu-
tation time. Since our goal is to obtain displacements
and strains, we choose RGA. Here a chromosome consists
of all the variables in correlation coefficient C, which is
defined asl?!
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u and v are the displacements for the point P; 9%, g;,

d 2, and d” are the derivative terms for the point P.

One gene of a chromosome represents a single parame-
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we define S; (i =1,2,---,6) as the ith element of §, for

example S3 = % and Sg = g—;.

The fitness evaluation function is a measure enabling
the evaluation of the suitability of a chromosome. It pro-
vides information about how good each candidate solu-
tion is. The fitness evaluation results determine the like-
lihood that a candidate solution is selected to produce
candidate solution in the next generation. Our objec-

tive is to search the parameter set (u,v, %, 3—;, g—;, g—;)

to maximize C. We choose correlation coefficient C as a
fitness function.

During the selection, the “parent” individuals aiming
at producing the “child” chromosomes are chosen. The
first step includes calculating the objective function value
at every individual. In our work, the selection of parent
chromosomes is done using tournament strategy: initial
chromosomes are randomly selected and the “strongest”,
i.e. with the highest fitness, is selected for reproduc-
tion. We found this scheme is fast, very easy to be im-
plemented, and very effective. This operation is repeated
as many times as required by the size of the population.

The crossover operator is acknowledged as one of the
main causes of the efficiency of GAs, it allows us to com-
bine some hopeful schemata and thus quickly progress
towards the optimal regions of the search space. The
crossover produces new individuals by combining the in-
formation contained in the parent chromosomes. Each
pair generates two children who replace their parents
inside the population. This exploration depends on
crossover operator and the crossover probability P.. Here
we choose improved arithmetic crossover operator. The
improved arithmetic crossover consists of producing chil-
dren in a way that every gene in a child is a combination
of genes from its two parents.

Let us assume that vector A = (A1, Az, As, A4, As, Ag)
and vector B = (By, B2, B3, By, By, Bg) denote the re-
gions of the displacement and strain, respectively, i.e.
A; <85, < B; (i =1,2,---,6). Assume that S,1; and
So2; are two chromosomes selected for application of the
crossover operator, and let Sy1; < So2; (if not, exchange
So1; and Sy2;). A child S,,; can be produced as

{ aAi + (1 - a)soliy if mOd(97 3) =0
Sm’ -

¢

aSo1i + (1 — @) So2i, if mod(6,3)=1 , (4)
aSogz- + (]. - a)B,-, if mOd(g, 3) =2

where a € [0,1] is a random number; # > 0 is a random
integer. Improved arithmetic crossover provides some lo-
cal/hill climbing search (if the parents are on the opposite
sides of the hill) capability for a GA, and has a fast con-
vergence speed.

This operator changes the value of a gene S;, what
brings the diversity among the population. This explo-
ration depends on two parameters, the mutation mode of
the genes and the probability P, of applying this opera-
tor. If a variable S; is selected to be mutated, the muta-
tion operator randomly changes the value of this variable
by generating a random number within the variation do-
main of S;. Like the crossover operator, the mutation is
applied with a probability P,,, which is classically fixed
to a “small” value throughout the algorithm. Let us as-

sume that S = ( du du dv dv

U:U:ﬂ7@7ﬂ7dy) is a chromosome

and S; € [ay,b;] is a gene to be mutated. We choose a
mutation operator, called improved Gaussian. The gene
S} resulting from the application of different mutation
operators is shown as

Si=S8i+a(d}_r;—6), (5)

j=1

where ¢ = %, r; € (0,1) is a random number. This mu-
tation operator emphasizes the exploration of the local
area surrounding the initial individual.

The algorithm stops when an individual fitness value
is 1 or when a maximum number of generations has been
rumn.

It is seen that GAs use three basic genetic operators:
selection, crossover, and mutation. The three operators
have various algorithms. In fact, we test various algo-
rithms. In Table 1, we list our optimal genetic operators
and the other ones used in Ref. [7]. The key parameters
for our approach are given in Table 2.

Now we verify the efficiency of our improved GAs
method using simulated images and experimental im-
ages, and compare it with GAs method used in Ref. [7] (in
which the three basic genetic operators are listed in Table
1). The computer-simulated images are generated using
an algorithm developed by Zhou et all5]. Two typical
deformation configurations are used to generate speckle
image pairs before and after deformation: 1) rigid body

Table 1. The Three Basic Genetic Operators

Operators  Our Method Ref. [7] Method
Selection Tournament Strategy Roulette Wheel
Crossover Improved Arithmetic  Arithmetic Crossover
Crossover Heuristic Crossover
Simple Crossover
Mutation  Improved Gaussian Uniform Mutation

Mutation Non-Uniform Mutation
Multiple Non-Uniform

Mutation

Table 2. The Key Parameters for Our Approach

Pn P. Chromosome Number Length of Chromosome

0.1 0.6 200 6

Fig. 1. A simulated speckle image pair with a rigid body
translation uo = 0.05.
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Table 3. The Discrete rms Error for a Pre-Assigned Rigid-Body Translation (uzo = 0.01 — 3 pixel)

Pre-Assigned Values Our Method Ref. [7] Method

up C-ERR u-ERR C-ERR u-ERR

3.0 6.22x107%  1.20x107% 2.10x107* 2.35x1072
1.0 1.83x107° 3.70x107% 3.93x10"% 1.03x107?
0.5 6.04x107°  4.74x10™* 5.68x107* 5.43x1072
0.1 1.54x10™%  8.69x107* 4.29x10™% 3.26x1072
0.05 7.31x107°%  3.70x107% 8.57x107% 7.97x1072
0.01 8.50x107° 1.50x107% 7.12x107* 6.82x1072

Table 4. The Discrete rms Error for a Pre-Assigned Rigid-Body Rotation

Pre-Assigned Values Our Method Ref. [7] Method
€ C-ERR uw-ERR v-ERR C-ERR u-ERR v-ERR
1004 4.15x107°  4.60x107*  4.710x107%  5.48x10™* 1.23x107'  4.98x107?
10ue 3.756x107%  6.71x107*  8.29x107*  6.79x10”* 7.67x107? 3.28x1072
Table 5. The Displacements of Some Points
Points Our Method Ref. [7] Method Newton-Raphson Method
u v u v u v

100,100 0.652434 —0.325667 1.011290 —0.0859096 0.651579 —0.331544

100,101  0.643931 —0.331009 0.596728  —0.258916  0.643720 —0.332857

100,102 0.648119 —0.331156 0.585168 —0.0197699  0.649813 —0.329185

100,103 0.648045 —0.327258 0.716848 —0.291104  0.649080 —0.331600

100,104 0.648722 —0.332771 0.771599  —0.223612  0.654376 —0.334369

100,105 0.651970 —0.334506 0.632159  —0.322123  0.649672 —0.336277

100,106  0.648050 —0.33275  0.205237 —0.422285 0.651073 —0.336267

100,107 0.649329 —0.337223 0.737482  —0.426862  0.652763 —0.338743

100,108 0.653668 —0.339217 0.808515 —0.325392  0.655339 —0.337737

100,109 0.646450 —0.341121 0.801230 —0.281289  0.647133 —0.342275

translation with u = [ug, 0]7; 2) rigid body rotation with
u = (¢-y, —e-x)T. The speckle image pairs are generated
with a pre-assigned rigid-body translation (uo = 0.01 -3
pixel), and rigid body rotation (¢ = 10ue, 100u¢). Figure
1 shows a simulated speckle image pair with a rigid body
translation ug = 0.05.

For every image pair, the total number of calculated
points with fixed positions in original image is 40. We
calculate the discrete root mean square (rms) error. The

n 1/2
[Z (ya—ye)?] !
discrete rms error is defined by ERR = “=L— ,
Yq is calculated value, y. is pre-assigned value. Tn Table 3,
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Fig. 2. An experimental speckle image pair with a rigid body
translation uo = 0.65, vo = —0.33.
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we list the discrete rms error for a pre-assigned rigid-body
translation (ug = 0.01 — 3 pixel). In this table, C-ERR
denotes the discrete rms error of the cross-correlation
coefficient C, and u-ERR is the discrete rms error of
the displacement u. In Table 4, we list the discrete rms
error for a pre-assigned rigid-body rotation (¢ = 10ue,
100u¢).

After being verified through simulated images, our
method is also verified using experimental images. The
test speckle pattern is generated through spraying paint
onto the surface. An aluminum block is bolted to the base
of the X-Y translation table. The specimen is translated
in X and Y directions. In Fig. 2, an experimental speckle
image pair with a rigid body translation uy = 0.65 pixel,
vo = —0.33 pixel is shown.

The displacements of some points are calculated by our
method, Ref. (7) method, and Newton-Raphson method.
The results are listed in Table 5. It can be seen that our
improved GAs method is more accurate than the method
proposed in Ref. [7].

In this paper, an improved GAs method for DISC is de-
veloped, which does not require reasonable initial guess of
displacement and deformation gradient and the calcula-
tion of second-order spatial derivatives of the digital im-
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ages, and thus reduces computation complexity. We test
various operators and propose optimal operators. The
algorithms are then verified using simulated images and
experimental images.
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